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of the same degree of accuracy as the calculations of 
radiative corrections for elastic-scattering processes. 
We have, however, throughout this treatment neglected 
the emission of photons by the heavy particles. This 
process may become important for very energetic 
electrons; further calculations would be necessary in 
that situation. 

I. INTRODUCTION 

IN the analysis of scattering phenomena, the funda
mental quantity is the scattering amplitude. It is a 

function of the momenta of the various incoming and 
outgong particles and a finite dimensional matrix in the 
spin space of the various particles. The total dimension
ality of the amplitude is the product of the dimension
alities of the spin space of each particle, so that a particle 
of finite mass and spin j (j = 0, § ,1- * •) contributes a 
factor 2j+l to the total dimensionality, while a mass-
less particle contributes a factor 1. Massless particles of 
opposite helicity are counted as different particles, since 
no proper Lorentz transformation, which is what relates 
different physical observers, mixes these states. 

Each particle corresponds to an irreducible unitary 
representation of the inhomogeneous Lorentz group. 
Under a Lorentz transformation, the amplitude remains 
invariant when the momentum and spin variables of 
each particle are transformed according to the corre
sponding representation. This is the fundamental state
ment of Lorentz invariance for scattering phenomena 
and is expressed mathematically below. By "construct
ing a scattering amplitude" is meant finding the most 
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general matrix of given dimensionality that has the 
correct transformation properties. In practice, this is 
accomplished by expressing the amplitude as a finite 
sum over a minimum number of spin matrices multiplied 
by Lorentz scalar coefficients. It is these spin matrices, 
with the correct transformation properties, that are 
actually constructed. 

The reasons for basing the construction on Lorentz 
invariance alone are twofold. On the one hand, the 
method is direct and provides a unified treatment for 
all spins. On the other hand, it is important in the con
frontation of theory with experiment to lay bare the 
logical foundations of the theory so that it is clear when 
a general postulate, such as Lorentz invariance, is being 
tested, rather than more-particular assumptions. In the 
literature, one finds most commonly an alternative 
method. Namely, the most general invariant operator is 
constructed that may be sandwiched between eigen-
functions of the free-field equations corresponding to 
the various scattered particles. This method is perhaps 
more cumbersome, since the number of field components 
is in general larger than the number of spin states, 
particularly for large spin. Also, the free field corre
sponding to a given spin is not unique.1 More in> 

1 E . P. Wigner, Theoretical Physics (International Atomic 
Energy Agency, Vienna, 1963), p. 60. 
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The fundamental statement of relativistic invariance for scattering amplitudes is that the amplitude re
mains invariant when the momentum and spin variables of each particle are transformed according to the 
corresponding irreducible, unitary representation of the inhomogeneous Lorentz group. To "construct an 
amplitude" is to find the most general function that has the required transformation properties. This con
struction, which had been previously effected for any number of massive particles of arbitrary spin, is 
extended here to include massless particles of arbitrary spin as well. In the case of photons, the resulting 
formalism is compared with the usual one that makes use of transverse polarization vectors and a gauge-
invariance condition. The two formalisms are proven to be equivalent. I t is concluded that the gauge condi
tion is superfluous as an independent physical principle for the purpose of constructing amplitudes. Its use 
in the conventional formalism is simply a way of imposing the Lorentz-transformation properties appropriate 
to massless particles. In an Appendix, the known analogous construction for massive spin-one particles is 
shown to be equivalent to the usual formalism, and the requirement of Lorentz invariance is shown to be 
equivalent to the usual prescription for virtual photons as well. 
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portantly, it may not be clear by this method when 
additional assumptions, besides Lorentz invariance, 
are used. 

A main result of the present investigation is that, for 
the limited purpose of constructing amplitudes and 
reducing the number of invariants, the principle of 
gauge invariance is superfluous. It will be shown that 
Lorentz invariance alone is equivalent to the usual 
prescription that includes gauge invariance and that 
says to form the photon-scattering amplitude by con
tracting a transverse polarization vector eM, e-k = 0 with 
Ap the most general scattering operator, and requiring 
that the result e • A be invariant under the gauge trans
formation e—> e+\k. The result applies to scattering 
amplitudes proper, so that each particle is physical and 
on its mass shell, as for example in photo-pion produc
tion or proton Compton scattering, and also when the 
photon is virtual, as in measurements of the proton 
vertex function via the exchange of a virtual photon to 
an electron. Nothing is said about gauge invariance in 
field theory nor in particular about the cause of the 
universality of electromagnetic coupling. 

The idea of constructing amplitudes directly from 
their transformation properties was vigorously advo
cated by Stapp,2 who carried this out in the case of 
spin-J particles and indicated the procedure for general 
spin. Subsequently, Barut, Muzinich, and Williams3 

effected the construction for massive particles of arbi
trary spin by making use of the elegant theory of 
^-dimensional spinor calculus, which we also adopt here. 
In a previous work,4 it was pointed out that the con
struction of Ref. 3 applies equally well to unstable 
particles. 

We propose here to extend the construction to mass-
less particles of arbitrary spin. Of course, experiment 
only provides an upper limit on the masses of the parti
cles, which are generally thought to be massless, and it 
is conceivable that in the future all particles will be 
found to have a finite mass. On the other hand, the 
zero-mass case should be a good approximation in any 
calculation where the rest mass of a particle is negligible 
compared to other energies involved. 

In Sec. II, we first recall the representations of the 
inhomogeneous Lorentz group corresponding to physical 
particles of zero mass. Then, we present some mathe
matical preliminaries on ^-dimensional spinor calculus. 
Two theorems are established concerning certain kinds 
of spinors, which we have called lightlike spinors, and 
for which a new kind of Lorentz-invariant inner product 
is found. 

In Sec. I l l , the problem of constructing an amplitude 
for arbitrary numbers of massive and massless particles 
is reduced to the problem of constructing invariant 

2 H. Stapp, Phys. Rev. 125, 2139 (1962). 
3 A. O. Barut, I. Mizinich, D. N. Williams, Phys. Rev. 136, 442 

(1963). Sections I-IV of this paper are relevant for present purposes. 
4 D. Zwanziger, Phys. Rev. 131, 2818 (1963). 

spinors for which the solution is indicated. The uni-
tarity condition is expressed in invariant form. 

In Sec. IV, the construction of the preceding section 
is applied to the case of photons and the result is shown 
to be equivalent to the usual formalism that invokes 
gauge invariance. 

Section V contains some concluding remarks and in 
an appendix the requirement of Lorentz invariance is 
shown to be equivalent to the usual prescription for the 
case of massive spin-one particles, and virtual photons. 

II. MATHEMATICAL PRELIMINARIES 

We first recall the representations of the inhomo
geneous Lorentz group corresponding to massless parti
cles. This is the group of elements {A,a), where A is a 
unimodular two-dimensional matrix, and a is a Her-
mitian two-dimensional matrix, obtainable from a real 
4-vector a by a=er-a=a°+cr«a. The law of multiplica
tion is 

(A2)a2)(Aha1) = (A2Ah A2d1A2
f+d2). 

This is, strictly speaking, not the inhomogeneous 
Lorentz group, but the group whose true representations 
are representations up to a factor of the inhomogeneous 
Lorentz group.5 

Mass-zero particles correspond to irreducible repre
sentations5 labeled by M = 0 , ± J , ± 1 , • • •. Each such 
representation is given by unitary operators in a Hilbert 
space for which ket vectors | k,/z) form a basis, k being 
an arbitrary 3 vector, with the law of transformation 

Z7(,4,a)|k^)=exp(—ik'-a) exp[i/*0(£,.4)]|k',/j), (1) 

where 
<j-k' = A(r-kA\ 

with k— (w,k), w= | k|, and similarly for k''. The element 
B(k,A) of the little group corresponding to A and k 
determines 6{k,A) according to 

/exp(i0/2) (x+iy) exp(-id/2)\ 
* (M) = ( ) 

\ 0 exp(-id/2) I 
= Uk "Wk ~iAHkU*, (2) 

where x and y are arbitrary real numbers; Z7k 

— exp(i<pv'?i/2), with cos<p=k*z and n=kXz\kXz\~1, 
is the unitary transformation taking z into k, 

L\vzU]J = <r'k] (3) 
and 

i / k = | ( w 1 / 2 + w - 1 / 2 ) + K ^ 1 / 2 - c o - 1 / 2 > 4 

is the Lorentz transformation parallel to k taking k 
into k, 

a-k=w+v-k=Hk(l-hr'k)Hk. (4) 

This completes the specification of the representations 
of the Lorentz group corresponding to massless particles. 

5 E. Wigner, Annals of Math. 40, 149 (1939). 
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We now turn our attention to n dimensional spinor 
calculus for which we want to establish notational con
ventions and some results. If A is an element of the 
two dimensional unimodular group C2, then a repre
sentation of this group of dimension 2j+1, j = 0, J, 1 • • • 
is given by the recursion relations 

&i*(A) = A9 

X ^mlnl
j-m{A)Am2nf{j~^,j) nhn2,n), (5) 

where the C's are Clebsch-Gordan coefficients. 
Let the recursion relations, Eq. (5), constitute the 

definition of &j(Q) where Q is any two-dimensional 
matrix, not necessarily unimodular. It is easily shown 
by induction from Eq. (5) that 

&(cQ) = c*'&(Q), (6) 

where c is any number. Let A and B be elements of C2 

and let a and b be numbers. Then from 

&(aA)&(bB) = (ab)*&(AB) = &(aAbB), 

it follows that the 3D' constitute a representation of the 
group of two dimensional nonsingular matrices. Further
more, by continuity, the 3D' constitute a representation 
of the semigroup of all two dimensional matrices: 

&(Q2)&(Qi) = &(Q2Qi), (7) 

where Qi and Q2 are any two-by-two matrices. It is 
trivial to show that £>'*, &~T and ay-11" also constitute 
representations. From Eq. (5) and the reality and ortho
gonality properties of the Clebsch-Gordan coefficients, 
we obtain 

&(AT)=&T(A). (8) 

Let us now turn our attention back to the unimodular 
group C2. Column vectors of dimension n=2j+l which 
transform according to 5y'(A)9 &*(A), &-1T(A), and 
SDy-lt(^4) under 4̂ e C2 are called "^-dimensional spinors" 
and are written, respectively, with lower undotted and 
dotted, upper undotted and dotted indices: 

& > ' = a W V , (9) 

For typographical reasons, here and in the following, 
spinors will be printed with the superscript appearing 
immediately after the associated subscript instead of in 
alignment with it. 

We may form tensor products of spinors ^VVV--'5*' * 

which transform according to 

t 31x32. 7 . P'"f 

Kct fi j 3 34-" 

It is clear that quantities of the form Zav
a and ^rja 

are invariant. In general one may not perform contrac
tions between dotted and undotted indices. However if 
A is unitary than £a and £* transform alike, as do £a 

and £«. Indices may be raised and lowered6 by the 
invariant tensors 

3VCC1'2) = CV'= Cy**= ( - 1)'*C/* 

= ( - l ) 2 C ^ = ( - l ) ^ « a . H » . (10) 

Wigner's three-j symbols constitute invariant tensors: 

/ji 3% j * \ /& 0 k\ 

\a 13 K) \ji 3 2 jj 

\ji h W Vd p k) 

= (2y3+i)-1 / 2(- i)*-*-c(ii,i»,i«;«, ft - * ) , (11) 

which transform according to 

)=£>aa>
n£>(i(i>nS)yy3i etc. (12) 

\a 0 y/ V & y'/ 

Of particular interest in physics are invariant spinor 
functions. These are spinor functions of momentum 
4-vectors ph p2, • • • ,piy • • • with the transformation 
property 

X S D ^ * - 1 ^ ) • • • &Vv';4..-<'--'(^), (13) 

where a'pi=Aa-piA1[. Examples of such invariant 
spinor functions are 

&(*-p)«fi=(*-p)Ji?^{vp)al?, (14) 
and 

&(*-pU= (r-pW** (*•*),**, (15) 
where &- p^p°--vp= (a- p)i/2&p. In the following we 
will frequently omit the dimensionality index j on a 
((T'p) when j= J. The problem of constructing scatter
ing amplitudes will be reduced to the construction of 
invariant spinor functions. 

The preceding material is standard and has only been 
introduced for notational completeness. Let us now 
define a new quantity which we call a "light-like spinor'' 

6 E. P. Wigner, Group Theory and its Application to the Quantum 
Mechanics of Atomic Spectra (Academic Press Inc., New York, 
1959), Chap. 24. (This material is not present in the original 
German language edition.) We adopt the notation of this chapter. 
Wigner's work deals with unitary matrices for which 3)* = SD~ir. 
However, his results are immediately applicable to the present case 
by making the substitution £> for £> and 3 T i r for 3)*, or 2D* for 
3) and 3D-1t> for 3)*, since they depend only on the properties of 
equivalent contragredient representations, 
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belonging to the light-like vector k. I t is an ^-dimen
sional spinor, defined for n>0, satisfying the invariant 
equation 

or 
\P K j / 

{$ * A 
(16b) 

For j = | these are WeyPs equations and, as shown in 
the Appendix, for j=l they are Maxwell's equations. 
To see the content of these equation, let us write them 
for a coordinate system in which k points in the z 
direction. Then (<r-&)a0=2co5a,„i/2£/3,~i/2 and (cr•&)«,§ 
= 2o>£a, 1/2̂ 3,1/2, so that Eqs. (16) take the form 

/(f) (i-l) P\ . 

( (I) 0-i) 
0')\ . 

Since the mixed three-,/ symbols vanish unless /3+K=p 
and K varies between —{j—\) and (j—§), we have 

£ / = 0 for p ^ j , 

) ? /=0 for f>7* — j . 

(17a) 

(17b) 

We may surmise that these two null spinors will corre
spond to massless particles of opposite helicity. 

We now prove the theorem: %J and t\f are null 
spinors belonging to k, if and only if they satisfy 

toa<f(v-k/.2»)y=$ai, (18a) 

©«^(*-V2&0v/s==*A (18b) 

These equations may be written 

( 2 « ) - w ( c r - * ) a ^ « y , 

They do not have a relativistically invariant form which 
is what gives the theorem its content. However, they 
are invariant under three-dimensional space rotations, 
for which A e €% is unitary, because then £« transforms 
like a £*, rj" like an rfa) and o> is constant. Consequently, 
we may choose k to point in the z direction. Equations 
(18) then take the form 

/1+o-A 
3>aA W=$J (19a) 

© a * ^ — ) * / « i 7 A (19b) 

•-C °). 
\ 0 0 / 

But 
l+er2 / I ON 

and 

so that 

1-o-s / 0 0̂  

- c :)• 

and 

y i + o - A 

\ 2 / 

/ 1 - o - A 

£>a03l I = 5y,„a5y _/3 = 

(20a) 

0 
1J 

(20b) 

as may be obtained from the recursion relations, Eq. (5), 
by induction. The solutions to Eq. (19) are consequently 
given by Eq. (17), which proves the theorem. We ob
serve that &(<r*k/2co) and $y(&'k/2w) are projection 
operators onto the one-dimensional subspace of light-like 
spinors belonging to k. Since the light-like spinors are 
defined by the relativistically invariant Eqs. (16), we 
conclude that, despite their noninvariant form, Eqs. 
(18) are in fact relativistically invariant, as may be 
verified by explicit transformation. Thus, if £ and rj 
satisfy Eqs. (18), then 

W=3>atf(A)y and m*=toaf-*(A) = iif (21) 

satisfy 
2>aftf(<r-k'/2v')&'= W, (22a) 

M * , * ' / 2 » 0 ^ s = %*', (22b) 

where o-'k,=Ao-'kAf. 
Finally we prove a second theorem: If %J and rjj& 

are light-like spinors belonging to k, then 

o r * V * « y (23) 

is a relativistically invariant form. We first note that 
from 

it follows that 
i?/a>/j«^r-*/2«) = * * , 

and hence 
rj^KJ((r^k/2o>) = rj&K 

Let £« and r}& satisfy Eqs. (18) and let £«' and rj&' be 
given by Eqs. (21). Then 

^~2wy=wf~2j'ri^(AU)^y 
= « , ^ 4

y ^ ( < r - * / 2 w M t 4 ( ( r - * / 2 « ) ] « i , ^ 
= « / ^ 4 ' 2 ) t ^ " ^ - * y 2 w ) ( < r - * 7 2 w ) i l t - i ] ^ ^ 

=c /~ 2 V ' ^ D ^ 1 ^ * k'/2ta)(2xa'/2u)A ^ J ^ f e * 

Q.E.D. 
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We will find that the unitary condition for massless 
particles takes the form (23). 

III. CONSTRUCTION OF AMPLITUDES WITH 
MASSLESS PARTICLES 

After the preceding preparatory section we now take 
up the physical problem of constructing amplitudes that 
satisfy Lorentz in variance. Let us denote the probability 
amplitude for a scattering process by FipiJw, ki,m) 
such that the probability for the process is proportional 
to | F |2 . The index i runs over the time-like momenta 
pi2=Mi2>0, and the index l runs over the light-like 
momenta &z2=0, corresponding to the massive and 
massless particles, respectively. The arguments j and <r 
refer to the total spin of the massive particles and a spin 
component, whereas the argument M carries the signifi
cance it has in Eq. (1). To avoid confusion we emphasize 
that the massless particles correspond to a one-dimen
sional representation in the spin variables; for a given 
particle the value of M is fixed, whereas the value of <r 
varies from — j to j . The arguments thus label irreduci
ble unitary representations of the Lorentz group and 
the rows of the representation space. 

Under a Lorentz transformation (A,a) the F trans
forms according to 

F'ipiJijO-i; ki,fxi) 

= exp[-fa- (£i p/+Zi hf)~] Hi 3 W * ( M ) 
XlL zwLmQ(khAY]F(PhhPi\ kifii), 

where a-pi=A<T'piAf, a-k/^Aa-kiA*, 6(ki,A) is de
fined below Eq. (1), and &(pi,A) is known.3-5 The 
Lorentz-invariance condition is 

F\phJiPi\ ki,m) = F(pi,ji,&i; hi9m), 
or 

F{pi,ji,<r%; kiyixi) 

= e x p [ - i ( E t . p/+Zi ki) • a~] Hi 3 > w * ( M ) 
X l L exptifxidikiiA^FiPijicr/; khm). (24) 

This is the formal statement of Lorentz invariance. 
Our object is to find the most general function F which 
satisfies this equation as an identity for arbitrary (A,a). 

The identity in a is satisfied by requiring J2ipi 
+1LI ki—0, which is conservation of momentum energy. 
From now on we assume that this equation holds. Ac
cording to Stapp's convention2 the 4 vectors in and on 
the future light cone are the momenta of the particles 
in the final state, whereas the negative of the 4 vectors 
in and on the past light cone are the momenta of the 
particles in the initial state. Since we will not be con
cerned with crossing relations, we do not need this 
general notation and in the following our convention 
will be that all 4-vector arguments, p, k, axe physical. 
In Refs. 2 and 3 [see particularly Eqs. (2.1)-(2.7) of 
Ref. 3 ] , it was shown how to simplify Eq. (24) for the 
indices referring to the massive particles by making a 
linear transformation on them, the transformation from 

R to M functions, in Stapp's notation. We assume that 
this linear transformation has been effected so that the 
invariance condition takes the form 

F(p/,h*i; * I ' / * I ) - I L 3W*<*>(il) 
X l L explmd(khA)lF(PiJi,cr/; khtn) (25) 

The asterisk on the 3D appears or does not appear, de
pending on the value of i. We see that with respect to 
the indices of the massive particles, F transforms like 
an invariant spinor function. 

We propose now to similarly simplify the invariance 
condition on the massless particles. The values of m are 
Mz=0, ± J ? ± 1 - • •. For JJLI=0 there is no problem. I t 
will be sufficient to suppress all indices except two, one 
for in= j:i>0 and another for m~ —J2<0. The general 
case may be obtained from our result by simple tensor 
product. We thus consider the condition 

F(£/ , j h k2', -J2) = exp[ijid(khA)-ij2e(k2yA)2 

XF(kujuk2,-J2). (26) 

The difficulty with it is that the exponential factors are 
not produced by a simple mathematical operation such 
as matrix multiplication, but each is defined as a 
quantity appearing in a given matrix, according to 
Eq. (2). 

We now adopt an artifice. Define the matrix 

F(kh j h ci, k2, —J2, <ri) = F(ki, ji, k2, — ]2)8h*i&h*i (27) 

with —ji<cri<ji; —J2<<T2<J2- I t is a trivial observa
tion that from the matrix F(<TI,<T2) on the left side of 
Eq. (27) we can find the function F of the right-hand 
side, by simply taking the upper left-hand element, all 
others being zero. The purpose of this artifice is that 
Eq. (26) may now be written 

F(ki,ji,<Ti,k2,J2,<r2) 

XFikuji,*!',^,-]'*,**'), (28) 

where B{k,A) is defined in Eq. (2), and we have ob
tained a transformation law that is simple matrix multi
plication, analogous to the one for massive particles. 
Equation (28) is easily verified as follows. The identity 

F(kh ji,<ri,k2,—J2,<r2) 

/l+<rz\ ^ /1+(TA 

= aw*( )$>wH ) 
XF(kh j h en', k*, -J2, **') (29) 

follows directly from Eqs. (27) and (20a). I t is in fact 
a necessary and sufficient condition for Eq. (27) to 
hold. Consequently the right-hand side of Eq. (28) may 
be written 

®n,AB(khA)( -Jj©W'**r5(*2,i4)( -)\ 

XF(kh j h <n', k2, -J2, o-/). 
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But from Eq. (2) we have 

MTHT)' 
and consequently the right hand side of Eq. (28) is 

explij16(khA)-ij2e(k2JA)2F(kh jhah kh ~j% <r2) , 

which is identical with Eq. (26). 
We may now simplify Eq. (28) by following the same 

procedure as for massive particles. We make a linear 
transformation on the spin variables from F to a new 
function A 

X3>«*/*(H*%U*j, (30) 

where Hk and £/k are denned below Eq. (2). Then from 
Eqs. (2) and (28) we find 

A ( k i , j h < r h k 2 , — i j , < r 2 ) 

This is recognized as the transformation law for an 
invariant spinor function, so we adopt the appropriate 
notation 

A(kh j h <rh kif -j2, <r2) = i4(*i,*2)ai*,yiA. (31) 

We note that an index corresponding to positive (nega
tive) JU in Eq. (25) corresponds to an undotted (dotted) 
spinor. Equation (30) may be inverted, yielding 

F(khjhcrhk2, —J2,<T2) 

= ^n ' / l ~K^k 1 ^k 1 )^(^i^2)n ' y V 2 ' i 2 ©, 2 v/ 2 - 1 + (^ k 2 ^k 2 ) 

(32) 
Equation (29) takes the form 

A{khh)nhHh 

XA(kiM)vl>K2>
h^>A Hk2~

lUk2f—-W+#k21 

r /l+<r42\ i 
x ^^AH^I )^k2 J 

/1+cr-^A /l+<r-£2\ 

A(khk2)<nhhh^ S W * ( )" 
V2C0!/ 

XA^wHhM)®* 
\2a?2^ 

(33) 

This relation is recognized as the statement that 
Aikifa)^3132 is light-like in each spinor index with 
respect to the momentum vector corresponding to that 
index. I t is the necessary and sufficient condition that 
F((rh(T2) be of the form (27). 

We now restore the indices of all massive and massless 
particles. The problem of constructing the most general 
solution to Eq. (25) has been shown to be equivalent 
to finding the most general invariant-spinor function 

A(- • - p w • -pi- - >kr * - k m ) . . . 0 ...al . . . a w (34) 

that is light-like in the spinor indices corresponding to 
massless particles, i.e., 

i (A 1 
(<r-*iW. . ) 

\ r a ji/ 

0 ' i - | ) . P\ 

XA(- • -kr • . * » - •y::.;"::.r:~.=o, (35a) 
.... Ji-" 3m-

/X a $\ 
(<r'km)p\[ m # J 

Xii(--^r--*«-o:::/I:::r»>0- (35b> 

In Ref. (3) it was shown how to express a general in
variant spinor function in terms of a minimum number 
of scalar invariant functions. When this has been 
carried out for the A of formula (34), the Eqs. (35) yield 
a set of linear relations that reduces the number of 
independent scalar invariants. In the following section 
the equivalence of these requirements to the conven
tional formalism for photons will be demonstrated 
explicitly, so that the conventional method of construc
tion also becomes available in this case. 

We will conclude this section by stating the unitarity 
condition, first in terms of the probability amplitude F 
and then in terms of the invariant spinor function A. 
Let us separate the variables of the scattering amplitude 
into a set of initial variables that appear on the right 
and a set of final variables that appear on the left. The 
unitarity condition then takes the form 

{Fh.a(kit*)-ZFat>(kMl*}/2i 

-f 2wn 

^KKn-Ka)[Fn.bMb)l*Fn,a(knJla) ( 3 6 ) 

in which we let one momentum and spin variable repre
sent the whole set that characterizes the initial or final 



B1042 D A N I E L Z W A N Z I G E R 

state. The variables for massive particles have been 
suppressed since their properites are assumed known. If 
we make a Lorentz transformation, writing k' for k and 
using Eq. (28), we obtain 

{ S>tvfZB(kh^.)2s>a^
i[B(kay4.)2 

XFb.a.(khka)- £>aa,t*£B(ka,A)l 

X S>wi*lB{kh,A)T_Fa>AKkb)J
f}W 

X f —[Fn>v{Kkh)~]*KKn-Ka) 
J 2con 

in which we have allowed for the possibility that the 

In this last equation we have written 

A%kafeb)a>b=LA{ka}kh)av'T , 
A*(khfa; kb)fi"p/h=LA(khfa; h^p/h'T, 

which correctly indicates the transformation properties 
of the indices. It is also trivial to verify that i * / V 2 is 
light-like in & and r. For the initial and final states, 
a and b ,we have continued the previous notation, but 
for the intermediate state we have written out explicitly 
the variables for two massless particles, k\ and h% trans
forming according to 3Dyi snd SD̂*2*, respectively, and 
note that the general case is easily obtained by simple 
tensor product. Making use of the properties of the JETs 
of Eq. (4) and the light-like properties of the ^4's 
Eq. (33), one easily obtains 

ZA(khka)bta> — A*(ka,kb)a',bl/2i 

= / 8(p-Pa)A^(khk2;kbhh
P/h 

J 2a>i 2co2 

X0>r^0>r2hA{khk2\ ka)<,t,a>. (38) 

This is the relation we have been seeking. The rela-
tivistic invariance of the right-hand side is guaranteed 
by the second theorem of the preceding section. 

same particle state may transform differently when it 
is in the initial or final configuration, i.e., according to 
3D* or ay. For this equation to have the same form as 
Eq. (36), we must take 

ayC5(M)]=^[5 (*^ ) ] , (37) 

so that the SD's depending on the free variables may be 
factored out, whereas the SD's depending on the internal 
variables cancel because they are unitary. Equation (37) 
simply states that initial and final configurations trans
form according to complex conjugate representations. 
By crossing symmetry it follows that particle and anti-
particle in the same configuration transform according 
to complex conjugate representations. 

We now substitute Eq. (32) into the unitarity 
condition: 

IV. EQUIVALENCE TO THE USUAL FORMALISM 
IN THE CASE OF PHOTONS 

It is customary to treat together the two-photon 
states of opposite helicity. Heretofore, we have treated 
them separately, as different particles, because a photon 
state of given helicity corresponds to an irreducible 
representation of the proper Lorentz group. It is the 
proper Lorentz transformations, without space or time 
reflections, that relate different physically possible ob
servers. Another way of saying this is that if one observer 
"sees" a photon of given helicity then all observers will 
see a photon of that helicity. In order to compare the 
conventional formalism with the one obtained in the 
preceding section we will make use of a matrix notation 
that treats the two photon states together. 

We found previously that states of opposite helicity 
in a given configuration correspond to dotted andun-
dotted indices, namely Aa

a)(k) and A&a)(k) taking 
j = 1 for photons and suppressing all other arguments. 
For convenience in the following we will make use of the 
contravariant componants A(x)k(k)% which have the 
property that under rotations they transform like 
Aa

a)(k). Our matrix notation is obtained by joining 
Aa

a)(k) and Au{l)(k) into a single vector, 

lAa^(k)>A(1)
&m, (39) 

{A(khka)ba'-LA(ka,kb)ab>'Y}/2i 

dzk\ dzk% 

- / 2a?i 2a>2 

or 

/

d*kx d%2 

2o>i 2a>2 
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so that a single-photon leg corresponds to a spin index 
that runs over six values and transforms according to 
£>(i)® £><D-it. The light-like condition holds: 

0 U P ( 1 ) ( * ) = 0 

\2 2 P' 

(40) 

As is well known, and as shall be verified below, an 
antisymmetric tensor has six independent components 
and transforms according to 33(1)©3D(1)'~lt. In addition, 
Eqs. (40) look like the Fourier transforms of linear 
differential equations. All this is suggestive of Maxwell's 
equations, which we now propose to write in spinor 
form, that is, in terms of irreducible representations. 
Let it be emphasized for clarity that we wish to study 
equations that have the same form as Maxwell's 
although the quantities appearing in them should not 
be interpreted as electric and magnetic field strengths. 
The quantities are, in fact, scattering amplitudes ex
pressed in the invariant spinor basis. But we will use 
the conventional electromagnetic notation so that the 
equations have a familiar form. 

Calling the space-time and space-space components 
of F^, E, and B, respectively, FllLP=(E)B), we may 
form two invariants 

and 
F ^ " = 2 ( E 2 - B 2 ) , 

i €x^F^F^=2E .B . 

Consequently, the Euclidean lengths of E+iB and 
E—$B, namely 

(E±iB) 2 =E 2 -B 2 ±2iE-B, 

are invariant, which shows that under a Lorentz trans
formation E+iB and E—iB transform according to a 
(complex) orthogonal matrix. It is consequently appro
priate for our purpose to write Maxwell's equations for 
E±iB. Maxwell's equations in a vacuum, written in 
terms of their Fourier transform, are 

k . E = k . B = 0 , 

kXE=o>B, kXB=-o )E , 

with co= |k | . From the second pair we have 

kX (E±*B) = =F*«(E±*B), 
or 

w-kX(E±iB)=±ow-(E±iB). 

Making use of the first pair we may write this as 

iF-kflr-(E=fcfB) = ±«o!-(E=bfB), 
or 

But the Pauli spin matrices (<T07)i are simply the three- j 
symbols (Clebsch-Gordan coefficients) in mixed co-
variant-contravariant-Cartesian components, as may be 
verified from their transformation properties. Conse
quently Maxwell's equations may be written 

(E+iB)p™ = 0, 

•<T-k)J )(E-*B) (1)>=0. 
Vo 2 P' 

0 

The invariant form we have obtained confirms our con
clusion about how E±iB transforms. These last equa
tions are identical with Eqs. (40), so that the condition 
by which we have defined light-like spinors reduces, 
for j= 1, to Maxwell's equations in a vacuum. 

The solutions to Maxwell's equations are of course 
well known, namely we may write for k2=0} 

F ^{k)^kliAv(k)—kvAll(k), 

k-A(k) = 0. (41) 

Then the quantities (39) are given, with the normaliza
tion factor chosen for convenience in the following, by 

(AJ»(k)A w*(k))=-<(E+iB)a,(E--iB)*), (42) 
2% 

with 
Fflp=knAp-—kyAIJL= (E,B), 

so that Eqs. (40) are automatically satisfied, provided 
only that A is transverse. We note that in forming F^ 
from A no componant of A parallel to k contributes. 

We have now obviously obtained the usual prescrip
tion which says that a photon corresponds to a 4-vector 
index M on the amplitude, Am that will be contracted 
with a transverse polarization vector tm e-k—0, such 
that the product e-A is invariant under a gauge trans
formation e —» e+A£. For the gauge condition is satisfied 
by requiring that k-A = 0, which is Eq. (41) above, and 
the transversality of e means that no componant of A 
parallel to k will contribute. 

For completeness we will translate the unitarity 
condition, Eq. (38), into the conventional notation. For 
this purpose it is sufficient to consider the spin sum over 
the intermediate states of a single photon and suppress 
all other arguments. Namely we must consider the form 

or\AftkVAa/»+Af,aVA^) (43) 

in which the two terms correspond to the two photon 
states of opposite helicity. The star of Eq. (38) has not 
been written on the A here so that no complex conjuga
tion is effected inadvertantly. The only properties to be 
used here are the spinorial and light-like properties of 
the indices that appear explicitly. When we substitute 
Eq. (42) into this expression, recalling that Aa and A& 
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transform contragrediently under rotations, we obtain 

- K - ' K E z - f B , ) • (ErHB,)+(B,+iB/) • (E<-*B<)] 
= - |co-2(E /-E,+B /-B,). 

We now substitute E='..—coA+L4° and B= —kX A and 
make use of k* A—uA° to obtain for the form (43) 

— (AfAi—Afkk-Ai) 

or, taking into account the transversality condition, 

ArAi=Af»Af. (44) 

This is the usual diagonal, or Feynman, form of the 
unitarity condition. 

We have established what was claimed. For the 
purpose of constructing amplitudes, the usual formalism, 
including gauge invariance, is no more than a way of 
imposing the transformation properties appropriate to a 
spin-one massless particle, and has no content beyond 
the principle of Lorentz invariance. This may not be too 
surprising since the effect of gauge invariance is to re
duce the number of independent componants from three, 
as for a massive spin-one particle, to the two helicity 
states of a massless spin-one particle. But, as is well 
known, the number of states is simply the dimen
sionality of the representation of the Lorentz group 
corresponding to the particle. 

It may be of interest to carry out an analysis, similar 
to the one of this section, for massless spin-two particles. 

V. CONCLUDING REMARKS 

A problem of current interest is to what extent do 
Lorentz invariance, unitarity, and crossing symmetry 
or analyticity determine the S matrix and how other 
symmetries may be fit into this scheme. It has been 
argued2-7 that the perturbative expansion of the S 
matrix can be obtained by iterating the unitarity condi
tion to generate singularities, in a way that is now 
familiar, beginning with amplitudes that are constant, 
and working only with amplitudes on the mass and 
energy shell, though analytically continued. 

The only case where the perturbation expansion is of 
practical interest is in the interaction of electrons and 
photons. However, this case seemed to require the inde
pendent principle of gauge invariance which did not fit 
naturally into the Lorentz invariance-unitarity-ana-
lyticity scheme. To the extent that this scheme is suc
cessful in generating the perturbation series, making use 
only of amplitudes on the mass shell, the result of the 
previous section means that gauge invariance is not 
required as an independent principle, being already 
implied by Lorentz invariance. This should be encourag
ing to those who hope to build an independent S-matrix 
theory and suggests that electrodynamics may not re-

7 J. C. Polkinghorne, Nuovo Cimento 23, 360 (1962); 25, 901 
(1962). 

quire new principles not already present in the stronger 
interactions. 
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APPENDIX: EQUIVALENCE TO THE USUAL 
FORMALISM FOR MASSIVE SPIN-ONE 
PARTICLES AND VIRTUAL PHOTONS 

In Ref. 2 it was shown in the case of spin-| particles 
that Lorentz invariance is equivalent to the usual 
formalism that makes use of Dirac spinors. In Sec. IV 
the analogous demonstration was effected for photons. 
The method of that section suggests how to do the same 
for massive spin-one particles. The usual formalism 
associates to a massive spin-one particle of momentum 
p, p2=m2

} a transverse polarization vector tm e-^=0, 
which is to be contracted with a scattering amplitude 
bearing a corresponding 4-vector index A M. The spinor 
formalism, resulting from Lorentz invariance alone, 
associates to a massive spin-one particle an undotted 
spinor or a dotted spinor, AJl) or A^)& related by 

4 { 1 ) = ( ^ ^ ) / i ( i ) ^ (Al) 
with 

(<r-p/m)at(1K*'P/to)ii)>ysstay. (A2) 

We have seen in Sec. IV that the quantity (Aa
(1),A <i)&) 

transforms like an antisymmetric tensor FM„=(E,B), 
so that 

(Aa(
l\A(1/) = (l/2iX(E+iB)a,(E-iB)&). (A3) 

Equation (Al) may then be written 

/ l ai aA / l ft ft\ 

<*+»>-< , »H i.) 
x(—) (—) (E-iB)*, 

or 

/« i i \ ^ /i ft ft\ 
( )(E+iB)a=(, ) 
\ 1 . «i a%/ \p | \/ 

x(—) (—) (E-tB)'. 
\ m /ccJtX m /mh 

In the last line use has been made of the orthogonality 
{ah i \ 

and symmetry and antisymmetry of v3[ . ) and 
\ 1 «i a%/ 

(a ¥ * J. Multiplying left and right by (cr.^/w)**1, 
\0 «i m) 
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we obtain 

. /« I 5 \ 
(a-pyH )(E+iB)a 

\ 1 CKi Oil' 

n pi ft\ 

(cr^)^[a . (E+a)] a i a l =((r^) f l , A Cir-(E-fB)]M. > 

or 
(€-€r.p)ir-(E+tB) = €r-(E-»B)(«-iF-p), 

where e=^°=(p2+w2)1/2. This reduces directly to 

p-B=0; pXE= € B. 

The solution to these equations is well known, namely 

( E , B ) = F M , = ^ - ^ M (A5) 

for Ap an arbitrary four vector. We note that the com-
ponant of A^ parallel it p^ does not contribute. By 
substituting Eq. (A5) into Eq. (A3,) Eq. (Al) is auto
matically satisfied. 

This result is equivalent to the usual prescription 
since a spin-one particle now corresponds to a 4-vector 
amplitude, of which the componant parallel to the 
momentum does not contribute. 

The componant parallel to p is consequently arbitrary 
and we can exploit this arbitrariness by making the 
substitution, 

Ap-^AJ^Ap-pup-A/ni2, (A6) 

to obtain a new amplitude A / which is transverse, 

p-A'*=0. (A1) 

We may freely impose this condition and thereby 
eliminate the arbitrariness in the amplitude. The sub
stitution (A6) cannot of course be made in the massless 
case, since it requires a division by m2

y so that in the 
massless case the transversality condition on the ampli
tude, which is the requirement of gauge invariance, is 
an additional constraint reducing the number of inde
pendent components from three to two. For a massive 
particle, on the other hand, the transversality condition 
on the amplitude may be achieved by the substitution 
(A6) without reducing the number of independent 
components. 

It is customary to make use of scattering amplitudes 
for 'Virtual photons" that are off the mass shell, k29^0. 
Such amplitudes, or particles, are not defined in a strict 
S-matrix theory but have a meaning within the frame
work of Lagrangian perturbation theory applied to the 
electromagnetic interactions. Amplitudes with virtual 
photons as external particles are, of course, of great 
practical importance since they include the form factors 
that are measured experimentally. 

It is natural to ask what are the transformation 
properties of such amplitudes. To answer this question, 
let us recall the usual prescription for constructing 
them: Each virtual photon corresponds to a 4-vector 
index /x on the amplitude Am on which the transversality 
condition k • A = 0 is imposed to satisfy gauge invariance. 
For k2 real, k2>0 this is the same as the prescription for 
massive spin-one particles when condition (A7) is im
posed, and we may say that for virtual photons of real 
positive mass, the amplitude transforms as for a massive 
spin-one particle. The virtual photon of real positive 
mass consequently corresponds to the same representa
tion of the Lorentz group as massive spin-one particles. 

However, form factors are defined for negative mass 
as well, which is, in fact, the value for which they are 
measured experimentally, and they are also commonly 
continued analytically in the photon mass to complex 
values. It is immediately clear however that when the 
photon has a real negative mass, frequently called a 
space-like photon, the amplitude does not correspond 
to the unitary representation of the Lorentz group for 
real space-like momenta which is infinite dimensional 
in the spin variable.8 The prescription for constructing 
the amplitude is in fact the same for positive or negative, 
real or complex values of the photon mass, i.e. the same 
as for a massive spin-one particle. The corresponding 
representations are, therefore, those previously found4 

for arbitrary complex or negative mass values and that 
are isomorphic to the real positive mass representation. 
We conclude that for virtual photons with k25*0, the 
prescription for constructing the amplitude is the same 
as requiring that the amplitude be invariant when the 
virtual photons are transformed according to the irre
ducible representation of the Lorentz group for spin-one 
nonmassless particles. The gauge invariance condition, 
k-A = 0, introduces no additional constraint in this case, 
as noted above. 

8Iu. Shirokov, Zh. Eksperim. i Teor. Fiz. 33, 861 (1957); 
33, 1196 (1957); and 33, 1208 (1957) [English transl.: Soviet 
Phys.—JETP 6, 664 (1958); 6, 919 (1958)^(1^6,^29,(1958)]. 


